Centroid neural network for unsupervised competitive learning

نویسنده

  • Dong-Chul Park
چکیده

An unsupervised competitive learning algorithm based on the classical -means clustering algorithm is proposed. The proposed learning algorithm called the centroid neural network (CNN) estimates centroids of the related cluster groups in training date. This paper also explains algorithmic relationships among the CNN and some of the conventional unsupervised competitive learning algorithms including Kohonen's self-organizing map (SOM) and Kosko's differential competitive learning (DCL) algorithm. The CNN algorithm requires neither a predetermined schedule for learning coefficient nor a total number of iterations for clustering. The simulation results on clustering problems and image compression problems show that CNN converges much faster than conventional algorithms with compatible clustering quality while other algorithms may give unstable results depending on the initial values of the learning coefficient and the total number of iterations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

طبقه بندی و شناسایی رخساره‌های زمین‌شناسی با استفاده از داده‌های لرزه نگاری و شبکه‌های عصبی رقابتی

Geological facies interpretation is essential for reservoir studying. The method of classification and identification seismic traces is a powerful approach for geological facies classification and distinction. Use of neural networks as classifiers is increasing in different sciences like seismic. They are computer efficient and ideal for patterns identification. They can simply learn new algori...

متن کامل

Evaluation of Clustering Algorithms for Cluster Heads Selection

Unsupervised competitive learning algorithms for clustering of sensor nodes in wireless sensor networks are evaluated with a large scale data set in this paper. The Centroid Neural Network (CNN) is compared with Fuzzy c-Means (FCM) algorithm in determining cluster heads among given sensor nodes. The cluster heads are combined with Low Energy Adaptive Clustering Hierarchy (LEACH) for minimizing ...

متن کامل

An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network

RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...

متن کامل

Noise-enhanced clustering and competitive learning algorithms

Noise can provably speed up convergence in many centroid-based clustering algorithms. This includes the popular k-means clustering algorithm. The clustering noise benefit follows from the general noise benefit for the expectation-maximization algorithm because many clustering algorithms are special cases of the expectation-maximization algorithm. Simulations show that noise also speeds up conve...

متن کامل

Centroid neural network adaptive resonance theory for vector quantization

In this paper, a novel unsupervised competitive learning algorithm, called the centroid neural network adaptive resonance theory (CNN-ART) algorithm, is proposed to relieve the dependence on the initial codewords of the codebook in contrast to the conventional algorithms with vector quantization in lossy image compression. The design of the CNN-ART algorithm is mainly based on the adaptive reso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 11 2  شماره 

صفحات  -

تاریخ انتشار 2000